skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Palmer, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When a moderately intense, few-picosecond-long laser pulse ionizes gas to produce an underdense plasma column, a linear relativistic plasma wave or wake can be excited by the self-modulation instability that may prove useful for multi-bunch acceleration of externally injected electrons or positrons to high energies in a short distance. At the same time, due to the anisotropic temperature distributions of the ionized plasma electrons, the Weibel instability can self-generate magnetic fields throughout such a plasma on a few picoseconds timescale that can persist even longer than the lifetime of the wake. In the present paper, we first show using simulations that both these effects do indeed co-exist in space and time in the plasma. Using our simulations, we make preliminary estimates of the contribution to the transverse emittance growth of an externally injected beam due to the Weibel magnetic fields in a few-millimeter-long plasma. We then present the results of an experiment that has allowed us to measure the spatiotemporal evolution of the magnetic fields using an ultrashort relativistic electron probe beam. Both the topology and the lifetime of the Weibel instability induced magnetic fields in the experiment are in reasonable agreement with the fields induced by the Weibel instability in the simulations. 
    more » « less
  2. Abstract A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work. 
    more » « less